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INTRODUCTION 1       J/-. ^^a^/        \ 

Thermography is increasingly being used as an quantitative NDE tool to detect 
damage in materials. Most of the theoretical analysis performed on thermographic data 
involves the use of one dimensional models or finite element analysis. This is due to the 
inability to account for lateral heat effects in an analytical fashion. 

In a previous paper [1] a simple model was developed (referred to as Model I) to 
describe the surface temperature evolution of a 1/8" thick aluminum panel with fixed 1" 
diameter flat bottom holes of different depth to a short pulse of radiant energy. That model 
correctly described the temporal behavior of all 1" flat bottom holes. To further validate 
Model I, a new panel was fabricated (Fig 1) that contained flat bottom holes of different 
diameters and different depths. After careful analysis of the data, it was found that Model I 
could not adequately account for the new experimental results. In this paper a new model 
will be introduced (referred to as Model II) and it will be shown that it accurately describes 
all experimental data. The main difference between both models is the way in which the 
thermal conductance's are modeled. In Model I the thermal conductance was approximated 
by an effective contact conductance (K=kc A where kc is a contact conductivity and A is the 
cross sectional area). In Model II the thermal conductance is approximated by an effective 
thermal conductivity (K=k A/1 where k is the thermal conductivity and 1 is a characteristic 
length). 

EXPERIMENTAL METHODS 

The camera system used in this experiments was a liquid Nitrogen cooled Amber 
Engineering 4128 camera with silicon optics operating in the 3 - 5 micron region of the 
electromagnetic spectrum. The samples were thermally excited with a pair of Xenon Arc 
lamps, each one connected to a 5 KJoule capacitor bank with a 10 msec discharge time. 
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Figure. 1: The figure on the left shows a 1/8" thick aluminum Al -7075 panel with flat 
bottom holes of 1", %" and V2" diameters and various depth. The figure on the right shows 
a quasi-isotropic 1/8" thick graphite/epoxy composite with four flat bottom holes of V" 
diameter and various depths. 

The material used in this study was a 1/8" thick aluminum panel with various 1", 
V" and '/2" diameter flat bottom holes drilled at depths ranging from 25 mil to 100 mil in 
steps of 25 mil as shown in Fig 1. The center to center distance between flat bottom holes 
was set to at least 2 diameters to minimize hole proximity effects. The arc lamps were 
positioned so as to produce a uniform distribution of heat over the region being studied. 
The distance from the arc lamps to the sample was approximately 14". The distance from 
the camera to the samples was approximately 22". The data acquisition rate was 43 
frames/sec and a total of 100 frames were collected for each experiment. Fig. 1 (Left) 
shows a drawing with the key parameters used in the study and model. The parameter "Q" 
represents the amount of energy deposited on the surface of the sample per unit area. The 
parameters "t0" and "d" represent the thickness of the panel and the distance from the 
surface of the panel to the defect (the words "defect" and "flat bottom hole" will not be 
differentiated in this paper) respectively. The points "T" Gust above a defect site) and "B" 
(far from any defect) are the points over the surface of the sample that where used to 
calculate the contrast curves (the contrast curve will be explained later). The quantity 80% 
and 60% represent the amount of material removed as a result of the drilling process. Fig. 1 
(Right) shows an actual frame taken soon after the thermal flash was shot. The white areas 
in that photo represent the flat bottom holes that tend to remain hotter than the background 
material due to the fact that they are thinner. 
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Figure. 2: (Left) This fig. shows the data curves require to generate a single contrast 
curve. (Right) This figure shows contrast curves for various flat bottom holes. 



100 Diameter 

075 Diameter 

0.50 Diameter 

LAMP EN£ROV ENEROY (s.u.) 

Figure. 3: (Left) This fig. show the evolution of the peak contrast as a function of the 
amount of material removed. (Right) This fig. shows the relation between the "peak 
contrast" and the amount of heat deposited in the surface of the material for three different 
defects. 

EXPERIMENTAL RESULTS 

In a standard experiment, the frame grabbing acquisition board is triggered first. 
After a few frames have been grabbed, the capacitor banks are discharged through the 
Xenon arc lamps. The grabbing rate is adjusted so that the entire thermal history (from 
room temperature to final equilibrium temperature) is recorded. In our experiments the 
frame rate was 43 frames/sec and the entire experiment lasted less than 2.5 sec. Fig. 2 Left 
shows the entire thermal history of two points on the surface of the panel. The curve 
labeled "defect" was taken from a point directly above and in the center of the flat bottom 
hole with 80% of material removed and it was referred as "T" in Fig. 1. This curve 
characterizes a typical damage site thermal evolution. The curve labeled "reference" was 
taken from a point far away from any flat bottom hole and characterizes the thermal history 
of an undamaged site, this point is referred as "B" in Fig. 1 (Left). Notice that the thermal 
history of the "reference" point does not decay monotonically as does the "defect" curve 
(there is a small increase in temperature in the reference curve at later times due to 
proximity effects). Also notice that the "reference" curve and the "defect" curve have a 
region at early times with very elevated temperature. This is an artifact produce by direct 
reflection of the initial flash produced by the arc lamps from the walls in the room to the 
camera and it normally disappears when calculating the contrast curve. 

The difference of the "reference" curve from the "defect" curve is termed the 
"thermal contrast" curve and is the curve with a solid black line in Fig. 2 (Left). Thermal 
contrast curves start and end with zero temperature since the initial and final equilibrium 
temperatures are uniform throughout the entire panel. Fig. 2 (Right) shows contrast curves 
for three flat bottom holes with 1", 3/4" and '/2" diameters and 25 mil from the surface. It is 
clear from this figure that even though the distance from the surface of the panel to the 
defect is the same for those three flat bottom holes, the peak contrast temperatures and the 
overall shape of the curves are significantly different. It will be shown later on this paper 
that this differences can be modeled if the lateral heat effects are taken into account. Fig. 3 
left shows the peak contrast temperatures for all flat bottom holes in the panel. The data 
points for the 1" and VS hole diameter almost overlap for all defect depth. The data for the 
Vi" hole diameter is smaller than for the other holes. 

Finally a set of experiments were performed where the amount of energy deposited 
on the surface of the sample was increased to study the relationship between peak thermal 
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Figure. 4: This Fig. shows a schematic representation of the zero lateral flow assumption 
used in the model. 

contrast and amount of delivered energy. Fig. 3 (Right) shows the results of this 
experiment for the 1" flat bottom holes. The amount of energy deposited on the surface of 
the panel was controlled by changing the amount of charge store in the capacitor banks. 
Four different settings were used which produced energy levels in the following amounts 
Q=l, Q=2, Q=4 and Q=8. where Q represents the amount of energy deposited per unit area 
(the energy is expressed in arbitrary units). From Fig. 3 (Right) it is clear that, for any 
given defect, as the energy deposited on the surface increases, the peak temperature 
contrast increases as well and in a linear proportion. 

CALORIMETRIC MODEL (ZEROTH ORDER APPROXIMATION) 

A simple theoretical model (zeroth order approximation) was introduced in our 
previous work [1] that, despite the fact that it was based in equilibrium thermodynamics 
and that no lateral heat effects were assumed, it correctly accounted for most of the 
observed experimental behavior of pulsed thermography. Fig. 4 shows a schematic 
representation of the model. Two regions are defined in the model (drilled and un-drilled 
regions) and it is assumed that no lateral energy flows between them. In the next section a 
more refined model will be derived that takes into account lateral heat transfer effects. 

By using simple calorimetric arguments it can be written that q, = r^cT, and 
q2= m2cT2 where q„ m„ and T, are the energy deposited on block 1, the mass of block 1 
and the final temperature of block 1 (similar definitions hold for block 2). The initial 
temperature of the panel can be assumed to be zero degrees. The mass can be written in 
terms of the density as in, = p A, d and m2 = pA, t0. If it is assumed that the energy 
deposited on the surface of the panel per unit area is constant, i.e., q,/A, = q2/A, = Q, then 
the final equilibrium temperature difference (or thermal contrast) between both blocks T, - 
T2 = AT will be 

AT = - 
pc U 

r 
to. 

(1) 

This equation correctly accounts for most of the observed experimental behavior of pulsed 
thermography, i.e., 

1. The contrast temperature (AT) increases linearly with the amount of energy 
deposited per unit area (Q). 

2. The higher the specific heat-density of a material (pet) the smaller the contrast 
temperature becomes (AT I) 

3. The closer the defect is to the surface (d ->• 0) the larger that the contrast 
temperature becomes (AT -> oo). 

4. As the defect depth approaches the panel thickness (d -> t0) the contrast 
temperature vanishes (AT -> 0). 



5.   For a given defect Icpth d, the thicker the panel (t0 -» oo) the larger the contrast 
temperature (AT— Q/pcd). 
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Where T,, T2 and T:" are the \ mperatures of the different blocks as shown in Fig. 5. The 
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Figure. 5: This figure sho\v> :iie building blocks of our simple model. 



Where T,, T2 and T,' are the temperatures of the different blocks as shown in Fig. 5. The 
boundary conditions of the problem are T,(t=0) = T0, T:(t=0) = T0, T2'(t=0) = 0. This set 
of coupled differential equations can be easily solved in the limit when A2 -» oo an the 
contrast curve AT(t) = T,(t) - T2(t) obtained from it is 

AT(t) = 
pcd (I -a + r) 

»        k 
"dtd + h)/«:' 

I+r     k   \ 

d(d+h)/ic (4) 

where  a = —-—  
k  A,    R 

and  r = - (don't confuse the variable "t = time" with the parameter 

t0 = panel thickness"). "t - 

The maximum or peak thermal contrast can be calculated by differentiating Eq. 4 and the 
result cives 

AT,„ 
pc U    t0 

ah rr1 

which happens at a time give by 
pc   d-t0       l + r 
— In  k  I -a + r       a 

(5) 

(6) 

It is worth comparing eqs. I and 5. It can be seen from those equations that the lateral heat 
flow effects can be grouped as a multiplicative factor to the main contrast relation Eq. 1. 

ANALYSIS OF RESULTS FOR ALUMINUM PANEL 

To understand the effects that the lateral flow of heat has on the peak thermal 
contrast ATmilx, eq. 5 needs to be studied further. If it is assumed that the material is 
isotropic then the lateral and normal thermal conductivity's will be the same. The 
parameter "a" can the be written as a = Ad(d+ h)/(A,R) = 2d(t0 -d)/R2. The lateral heat 
flow contribution to the peak thermal contrast (the square bracket term in eq. 5) can then be 
simplified to 

fl.Wral(d) = 
"ah' i~l 

ah 

Lf« J 
2d-(t„-d) 

:■)(!,.-d> (7) 

Fig. 6 shows a graph of Eq. 7 for various hole diameters as a function of defect 
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Fig. 6: This figure shows the lateral heat flow factor (Eq. 7) as a function of the depth of the 
flaw for various hole radii. 
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Figure. 7:        This figure shows the fit (solid lines) to the experimental contrast curve data 
(doted lines). Each graphs shows the contrast curves for three flat bottom holes at constant 
depth but with different diameter holes. 

depth. From there it can be seen that for flaws that are very close to the surface (d « 0) or 
for flaws that are very deep in the material (d « t0) the lateral heat flaw effects tend to 
disappear in this model (or the lateral heat flow factor fialeral(d) -> 1) and as a result all the 
contribution to the peak thermal contrast will come from Eq. 1 (which assumed no lateral 
heat flow). This result can be explained as follows: In the limit when d -» 0, the lateral 
conduction of heat will tend to zero because the lateral cross sectional area (2uR-d) will 
become vanishingly small and therefore Eq. 1 is recovered. In the limit when d -» t0, the 
lateral conduction of heat will tend to zero because in this limit the temperature gradients 
will approach zero and therefore Eq. 1 is recovered. Finally, when R -» oo the lateral 
conduction of heat will again tend to zero because of the length over which the thermal 
energy has to travel is large and therefore Eq. 1 is recovered. 

Eq. 5 was used to fit the experimental values of the peak contrast introduced at the 
beginning of the paper. Fig. 6 shows the result of the fits (lines) to the three sets of data 
point. Only one parameter (Q/pc) was adjusted to fit all three data sets. 

Eq. 4 was used to fit all the experimental contrast curves. From Fig. 7 it can be 
seen that this simple model fits fairly well the experimental thermal contrast curves. The 
only parameter that was adjusted to fit all contrast curves was the thermal conductivity 
normalized to the specific heat-density "k/pc". The best fit is for the data with 60% mass 
removal. The model does not fit the time period around the maximum for the 80% mass 
removal case. 

QUASIISOTROPIC MATERIALS 

To validate the model further, a 1/8" thick graphite epoxy composite panel was 
fabricated with four 0.5" diameter flat bottom holes at various depths. A standard heat 
pulse experiment was performed on the sample. After careful analysis of the data it was 
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Figure 8: This figure shows the building blocks of our most general model. 
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Figure 9: This figure shows the results of the fit of the new model to the four flat bottom 
holes in a graphite epoxy composite 

found that our simple model (Eqs. 4, 5 and 6) was not able to adequately fit the data. Two 
factors are believed to be responsible to the discrepancies, the significantly larger thermal 
relaxation time of the Gr/Ep panel compared to the Aluminum panel and the larger in-plane 
thermal conductivity compared to the out-of-plane one. A new, more general model was 
developed. In this model (Fig. 8 ) it is assumed that the thickness of material over which 
the heat pulse is absorbed is a new variable defined by "p". A new set of differential 
equations can be written for this problem in the same fashion that were derived for the 
previous model (Eqs. 3). The thermal conductance's are defined in the same fashion as 
before (Eqs. 2). A closed form solution can be found for the temporal dependence of the 
thermal contrast (not shown here because of its length). A closed form solution for the 
peak thermal contrast and for the time at which the peak thermal contrast happens has not 
been found. 

Figure 9 shows the results of this, more general model. The agreement between the 
data and the model is very good. Some of the small discrepancies found can be attributed 
to the difficulties of finding systematic background curves. Further studies need to be 
performed to validate the model. 

CONCLUSION 

Three simple models have been developed that to a first order approximation 
describes the main features of thermal pulse analysis when applied to a planar flaws. The 
last and most general of the models introduced takes into account lateral heat conduction 
effects, anisotropic thermal conductivity, thickness effects, flaw size effects, density 
effects, material properties and pulse duration. The model correctly predicts the 
relationships between the previous parameters. Eqs. 4, 5 and 6 are the main output of the 
second model. This relations were shown to model correctly the time dependence of the 
thermal contrast, the peak thermal contrast and the time at which the thermal contrast 
peaks. 
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